Andersen, T., Sorensen, B., & Chung, H.-J. (1999). Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study. *Journal of Econometrics, 91*(1), 61–87.
https://doi.org/10.1016/s0304-4076(98)00049-9
Barndorff-Nielsen, O. (1997). Normal inverse Gaussian distributions and stochastic volatility modelling. *Scandinavian Journal of Statistics, 24*(1), 1–13.
https://doi.org/10.1111/1467-9469.00045
Cabral, R., Bolin, D., & Rue, H. (2023). Controlling the flexibility of non-Gaussian processes through shrinkage priors. *Bayesian Analysis, 18*(4), 1223–1246.
https://doi.org/10.1214/22-ba1342
Cabral, R., Bolin, D., & Rue, H. (2024). Fitting latent non-Gaussian models using variational Bayes and Laplace approximations. *Journal of the American Statistical Association, 119*(548), 2983–2995.
https://doi.org/10.1080/01621459.2023.2296704
de Zea Bermudez, P., Marín, J. M., Rue, H., & Veiga, H. (2021). Integrated nested Laplace approximations for threshold stochastic volatility models. *Econometrics and Statistics*.
https://doi.org/10.1016/j.ecosta.2021.08.006
Harvey, A., Ruiz, E., & Shephard, N. (1994). Multivariate stochastic variance models. *The Review of Economic Studies, 61*(2), 247–264.
https://doi.org/10.2307/2297980
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. *Machine Learning, 37*(2), 183–233.
https://doi.org/10.1023/a:1007665907178
Kim, S., & Shephard, N. (1998). Stochastic volatility: likelihood inference and comparison with ARCH models. *The Review of Economic Studies, 65*(3), 361–393.
https://doi.org/10.1111/1467-937x.00050
Martino, S., Aas, K., Lindqvist, O., Neef, L., & Rue, H. (2011). Estimating stochastic volatility models using integrated nested Laplace approximations. *European Journal of Finance, 17*(7), 487–503.
https://doi.org/10.1080/1351847X.2010.495475
Nacinben, J. P. C. d. S. M., & Laurini, M. (2024). Multivariate stochastic volatility modeling via integrated nested Laplace approximations: A multifactor extension. *Econometrics, 12*(1).
https://doi.org/10.3390/econometrics12010005
Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. *Journal of the Royal Statistical Society, 71*(2), 319–392.
https://doi.org/10.1111/j.1467-9868.2008.00700.x
Rue, H., Riebler, A., Sørbye, S. H., Illian, J. B., Simpson, D. P., & Lindgren, F. K. (2017). Bayesian computing with INLA: A review. *Annual Review of Statistics and its Application, 4*, 395–421.
https://doi.org/10.1146/annurev-statistics-060116-054045
Taylor, S. J. (1982). Financial returns modelled by the product of two stochastic processes – A study of daily sugar prices, 1961–79. In O. D. Anderson (Ed.), *Time Series Analysis: Theory and Practice, Volume 1* (pp. 203–226). Elsevier/North-Holland.
https://doi.org/10.1093/oso/9780199257195.003.0003
Taylor, S. J. (1986). *Modelling Financial Time Series*. John Wiley & Sons.
Zhang, C., Bütepage, J., Kjellström, H., & Mandt, S. (2018). Advances in variational inference. *IEEE Transactions on Pattern Analysis and Machine Intelligence, 41*(8), 2008–2026.
https://doi.org/10.1109/tpami.2018.2889774