Forecasting Bitcoin and Ethereum risk measures through MSGARCH models: Does the specification matter?
Published:
Mar 10, 2025
Volume:
23
Keywords:
Cryptocurrencies
Expected Shortfall
Maximum likelihood
Model misspecification
Value-at-Risk
Abstract
Recent studies have suggested that more complex models than GARCH are better suited for forecasting cryptocurrency risk measures, such as Value-at-Risk and Expected Shortfall. Among these studies, some highlight the advantages of MSGARCH models over traditional GARCH models. While improvements over single-regime GARCH models have been observed by using MSGARCH, the literature has only focused on the MSGARCH specification proposed by Haas, Mittnik and Paolella (Journal of Financial Econometrics, 2004) overlooking several other well-established MSGARCH specification alternatives. In this paper, we illustrate that exploring alternative MSGARCH specifications can lead to improvements in risk measure performance, emphasizing the potential benefits of using several specifications.
How to cite
Luiz Hotta, Carlos Trucios, Pedro L. Valls Pereira, Mauricio Zevallos. Forecasting Bitcoin and Ethereum risk measures through MSGARCH models: Does the specification matter?. Brazilian Review of Finance, v. 23, n. 1, 2025. p. e202503. DOI: 10.12660/rbfin.v23n1.2025.92777.
References
Ardia, D., Bluteau, K., Boudt, K., Catania, L. and Trottier, D.-A. (2019). Markov-Switching GARCH models in R: The MSGARCH package, Journal of Statistical Software, 91(4). https://doi.org/10.18637/jss.v091.i04
Ardia, D., Bluteau, K., Boudt, K. and Catania, L. (2018). Forecasting risk with Markov-switching GARCH models: A large-scale performance study, International Journal of Forecasting, 34(4), 733-747. https://doi.org/10.1016/j.ijforecast.2018.05.004
Ardia, D., Bluteau, K. and Rüede, M. (2019). Regime changes in Bitcoin GARCH volatility dynamics, Finance Research Letters, 29, 266-271. https://doi.org/10.1016/j.frl.2018.08.009
Bartlett, M.S. (1946). On the theoretical specification and sampling properties of autocorrelated time-series, Supplement to the Journal of the Royal Statistical Society, 8(1), 27-41. https://doi.org/10.2307/2983611
Bayer, S. and Dimitriadis, T. (2022). Regression-based expected shortfall backtesting, Journal of Financial Econometrics, 20(3), 437-471. https://doi.org/10.1093/jjfinec/nbaa013
Bezanson, J., Edelman, A., Karpinski, S. and Shah, V.B. (2017). Julia: A fresh approach to numerical computing, SIAM Review, 59(1), 65-98. https://doi.org/10.1137/141000671
Caporale, G.M. and Zekokh, T. (2019). Modelling volatility of cryptocurrencies using Markov-Switching GARCH models, Research in International Business and Finance, 48, 143-155. https://doi.org/10.1016/j.ribaf.2018.12.009
Christoffersen, P.F. (1998). Evaluating interval forecasts, International Economic Review, 39(4), 841-862. https://doi.org/10.2307/2527341
Creal, D., Koopman, S.J. and Lucas, A. (2013). Generalized autoregressive score models with applications, Journal of Applied Econometrics, 28(5), 777-795. https://doi.org/10.1002/jae.1279
de Prince, D., Marçal, E.F. and Valls Pereira, P.L. (2025). Exploring co-explosive dynamics: Bitcoin price, attractiveness, and sentiment variables, Economics Letters, 246, 112072. https://doi.org/10.1016/j.econlet.2024.112072
Engle, R.F. and Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles, Journal of Business & Economic Statistics, 22(4), 367-381. https://doi.org/10.1198/073500104000000370
Fissler, T., Ziegel, J.F. and Gneiting, T. (2016). Expected Shortfall is jointly elicitable with Value at Risk - Implications for backtesting, Risk, 5(1), 8-16. https://doi.org/10.1198/073500104000000370
Francq, C. and Zakoïan, J.-M. (2009). Bartlett's formula for a general class of nonlinear processes, Journal of Time Series Analysis, 30(4), 449-465. https://doi.org/10.1111/j.1467-9892.2009.00623.x
Gaglianone, W.P., Lima, L.R., Linton, O. and Smith, D.R. (2011). Evaluating value-at-risk models via quantile regression, Journal of Business & Economic Statistics, 29(1), 150-160. https://doi.org/10.1198/jbes.2010.07318
González-Rivera, G., Lee, T.-H. and Mishra, S. (2004). Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood, International Journal of Forecasting, 20(4), 629-645. https://doi.org/10.1016/j.ijforecast.2003.10.003
Gray, S.F. (1996). Modeling the conditional distribution of interest rates as a regime-switching process, Journal of Financial Economics, 42(1), 27-62. https://doi.org/10.1016/0304-405x(96)00875-6
Haas, M. and Paolella, M.S. (2012). Mixture and Regime-Switching GARCH Models, in L. Bauwens, C.M. Hafner and S. Laurent (eds), Handbook of Volatility Models and Their Applications, John Wiley & Sons, Hoboken, New Jersey, chapter 3, 71-102. https://doi.org/10.1002/9781118272039.ch3
Haas, M., Mittnik, S. and Paolella, M.S. (2004). A new approach to Markov-switching GARCH models, Journal of Financial Econometrics, 2(4), 493-530. https://doi.org/10.1093/jjfinec/nbh020
Hansen, P.R., Lunde, A. and Nason, J.M. (2011). The model confidence set, Econometrica, 79(2), 453-497. https://doi.org/10.3982/ECTA5771
Harvey, A.C. (2013). Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series, Vol. 52, Cambridge University Press.
Hotta, L.K., Trucíos, C. and Zevallos, M. (2024). A note about calibration tests for VaR and ES, in C. Chiann, A. Pinheiro and C.M. Toloi (eds), Time Series and Wavelet Analysis: Festschrift in Honor of Pedro A. Morettin, Springer, 59-80. https://doi.org/10.1007/978-3-031-66398-7_4
Klaassen, F. (2002). Improving GARCH volatility forecasts with regime-switching GARCH, in J.D. Hamilton and B. Raj (eds), Advances in Markov-switching Models, Springer, 223-254. https://doi.org/10.1007/s001810100100
Kupiec, P. (1995). Techniques for verifying the accuracy of risk measurement models, The Journal of Derivatives, 3(2), 73-84. https://doi.org/10.3905/jod.1995.407942
Maciel, L. (2021). Cryptocurrencies value-at-risk and expected shortfall: Do regime-switching volatility models improve forecasting?, International Journal of Finance & Economics, 26(3), 4840-4855. https://doi.org/10.1002/ijfe.2043
McNeil, A.J. and Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach, Journal of Empirical Finance, 7(3-4), 271-300. https://doi.org/10.1016/S0927-5398(00)00012-8
Nelder, J.A. and Mead, R. (1965). A simplex method for function minimization, The Computer Journal, 7(4), 308-313. https://doi.org/10.1093/comjnl/7.4.308
Nolde, N. and Ziegel, J.F. (2017). Elicitability and backtesting: Perspectives for banking regulation, The Annals of Applied Statistics, 11(4), 1833-1874. https://doi.org/10.1214/17-AOAS1041
Taylor, J.W. (2019). Forecasting value at risk and expected shortfall using a semiparametric approach based on the asymmetric Laplace distribution, Journal of Business & Economic Statistics, 37(1), 121-133. https://doi.org/10.1080/07350015.2017.1281815
Troster, V., Tiwari, A.K., Shahbaz, M. and Macedo, D.N. (2019). Bitcoin returns and risk: A general GARCH and GAS analysis, Finance Research Letters, 30, 187-193. https://doi.org/10.1016/j.frl.2018.09.014
Trucíos, C. (2019). Forecasting Bitcoin risk measures: A robust approach, International Journal of Forecasting, 35(3), 836-847. https://doi.org/10.1016/j.ijforecast.2019.01.003
Trucíos, C., Hotta, L.K. and Ruiz, E. (2017). Robust bootstrap forecast densities for GARCH returns and volatilities, Journal of Statistical Computation and Simulation, 87(16), 3152-3174. https://doi.org/10.1080/00949655.2017.1359601
Trucíos, C. and Taylor, J.W. (2023). A comparison of methods for forecasting value at risk and expected shortfall of cryptocurrencies, Journal of Forecasting, 42(4), 989-1007. https://doi.org/10.1002/for.2929